On Matrix-valued Herglotz Functions

نویسنده

  • FRITZ GESZTESY
چکیده

We provide a comprehensive analysis of matrix-valued Herglotz functions and illustrate their applications in the spectral theory of self-adjoint Hamiltonian systems including matrix-valued Schrödinger and Dirac-type operators. Special emphasis is devoted to appropriate matrix-valued extensions of the well-known Aronszajn-Donoghue theory concerning support properties of measures in their Nevanlinna-Riesz-Herglotz representation. In particular, we study a class of linear fractional transformations MA(z) of a given n × n Herglotz matrix M(z) and prove that the minimal support of the absolutely continuos part of the measure associated to MA(z) is invariant under these linear fractional transformations. Additional applications discussed in detail include self-adjoint finite-rank perturbations of self-adjoint operators, self-adjoint extensions of densely defined symmetric linear operators (especially, Friedrichs and Krein extensions), model operators for these two cases, and associated realization theorems for certain classes of Herglotz matrices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A General Realization Theorem for Matrix-valued Herglotz-nevanlinna Functions

New special types of stationary conservative impedance and scattering systems, the so-called non-canonical systems, involving triplets of Hilbert spaces and projection operators, are considered. It is established that every matrix-valued Herglotz-Nevanlinna function of the form

متن کامل

On Periodic Matrix-Valued Weyl-Titchmarsh Functions

We consider a certain class of Herglotz-Nevanlinna matrix-valued functions which can be realized as the Weyl-Titchmarsh matrix-valued function of some symmetric operator and its self-adjoint extension. New properties of Weyl -Titchmarsh matrixvalued functions as well as a new version of the functional model in such realizations are presented. In the case of periodic Herglotz-Nevanlinna matrix-v...

متن کامل

A Class of Matrix-valued Schrödinger Operators with Prescribed Finite-band Spectra

We construct a class of matrix-valued Schrödinger operators with prescribed finite-band spectra of maximum spectral multiplicity. The corresponding matrix potentials are shown to be stationary solutions of the KdV hierarchy. The methods employed in this paper rely on matrix-valued Herglotz functions, Weyl–Titchmarsh theory, pencils of matrices, and basic inverse spectral theory for matrix-value...

متن کامل

Some Applications of Operator-valued Herglotz Functions

We consider operator-valued Herglotz functions and their applications to self-adjoint perturbations of self-adjoint operators and self-adjoint extensions of densely defined closed symmetric operators. Our applications include model operators for both situations, linear fractional transformations for Herglotz operators, results on Friedrichs and Krein extensions, and realization theorems for cla...

متن کامل

A Simple Proof of Livingston's Inequality for Carathéodory Functions

The Livingston determinant inequality involving the Maclaurin coefficients of a Carathéodory function are derived in a straightforward manner by use of the Riesz-Herglotz representation and the Schwarz inequality. The result is extended to the case of matrix-valued functions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997